Discussion :: Banker's Discount
-
The banker's gain on a certain sum due 1 \(\frac { 1 } { 2 } \) years hence is \(\frac { 3} { 25 } \) of the banker's discount. The rate percent is:
A.
5\(\frac { 1 } { 5 } \)% |
B.
9\(\frac { 1 } { 11 } \)% |
C.
8 \(\frac { 1 } { 8 } \)% |
D.
6 \(\frac { 1 } {6 } \)% |
Answer : Option B
Explanation :
Let, B.D = Re. 1.
Then, B.G. = Re .\(\frac { 3 } { 25 }\)
T.D. = (B.D. - B.G.) = Re [1-\(\frac { 3 } { 25 }\) ]= Re.\( \frac { 22 } { 25 } \)
Sum = [\([\frac { 1 *(22/25) } { 1-(22/25) }]\) =Rs.\( \frac { 22 } { 3 } \)
S.I. on Rs. \( \frac { 22 } { 3 } \) for 1 \(\frac { 1 } { 2 } \)yeras is Re .1.
Rate = \([\frac { 100*1 } { 22/3*3/2 } ]\)% = \(\frac { 100 } { 11 } \) = 9 \(\frac { 1} { 11 } \)%
Be The First To Comment