Home / Arithmetic Aptitude / Permutation and Combination :: Discussion

Discussion :: Permutation and Combination

  1. Out of 7 consonants and 4 vowels, how many words of 3 consonants and 2 vowels can be formed?

  2. A.

    210

    B.

    1050

    C.

    25200

    D.

    21400

    E.

    None of these

    View Answer

    Workspace

    Answer : Option A

    Explanation :

    Number of ways of selecting (3 consonants out of 7) and (2 vowels out of 4)= (7C3 x 4C2)

                     

                                                                                                                          = [\( \frac { 7*6*5 } {3*2*1 } \)\( \frac { 4*3 } { 2*1 }\)]

                       

                                                                                                                             = 210

                         

                 Number of groups, each having 3 consonants and 2 voweL     = 210.

     

    Number of ways of arranging  5 letters among themselves    = 5!
      = 5 x 4 x 3 x 2 x 1
      = 120.

     

     Required number of ways = (210 x 120) = 2520

     


Be The First To Comment