Home / Arithmetic Aptitude / Problems on Trains :: Discussion

Discussion :: Problems on Trains

  1. A train travelling at 48 kmph completely crosses another train having half its length and travelling in opposite direction at 42 kmph, in 12 seconds. It also passes a railway platform in 45 seconds. The length of the platform is

  2. A.

    400 m

    B.

    450 m

    C.

    560 m

    D.

    600 m

    View Answer

    Workspace

    Answer : Option A

    Explanation :

    Let the length of the first train be x metres.

    Then, the length of the second train is \( (\frac { X} { 2 } ) metres\)

    Relative speed = (48 + 42) kmph = \((90\times\frac{5}{18})m/sec = 25m/sec\)

    Therefore \(\frac{(X +\frac{X}{2})}{25}=12 \)  or \((\frac { 3X } { 2 } ) =300\) or  X=200


    Let the length of platform be y metres.Therefore Length of first train = 200 m.

    Speed of the first train = \((48\times\frac{5}{18})m/sec\) = \( (\frac { 40 } { 3 } ) m/sec\)

     

    Therefore\(((200+y)\times\frac{3}{40})\) =45

     

      600 + 3y = 1800

     

      y = 400 m.


Be The First To Comment