Discussion :: Exam Questions Paper
-
Find the Fourier transform of the half cosine pulse as shown below :
A.
0.5 {sin c [0.25(f - 1)] + sin c [2.5(f + 1)]}
|
B.
0.5 {sin c [0.5(f - 1)] + sin c [0.5(f + 1)]}
|
C.
0.25 {sin c [0.25(f - 1)] + sin c [0.25 (f - 1)]}
|
D.
0.25 {sin c [0.5(f - 1)] + sin c [0.5(f - 1)]}
|
Answer : Option B
Explanation :
The given signal can be expressed as multiplication of x1(t) and x2(t) as shown below.
where A = 2, T/2 = 0.25 => T = 0.5
∴ x(t) = x1(t) x x2(t)
=> X(f) = X1(f) * X2(f)
Now X1(f) = [δ(f - f0) + δ(f + f0)]
= [sin c [T(f - f0)] + sin c[T(f + f0)]]
Now, A = 2, T = 0.5 and f0 = = 1
=> X(f) = 0.5[sin c (0.5(f - 1)) + sin c (0.5(f + 1))].
Be The First To Comment