Home / Civil Engineering / Theory of Structures :: Section 4

Civil Engineering :: Theory of Structures

  1. The forces acting normally on the cross section of a bar shown in the given figure

  2. A.

    compressive stress

    B.

    tensile stress

    C.

    shear stress

    D.

    none of these.


  3. If the normal stresses due to longitudinal and transverse loads on a bar are σ1 and σ2 respectively, the tangential component of the stress on an inclined plane through θ°, the longitudinal load is

  4. A.

    σ1 sin θ + σ2 cos θ

    B.

    σ1 sin θ2 + σ2 cos2 θ

    C.

    ( σ1 -σ2) \( \frac { sin 2θ} { 2 } \)

    D.

     (σ1 +σ2) \( \frac { sin 2θ} { 2 } \)


  5. The ratio of the section modulus of a square section of side B and that of a circular section of diameter D, is

  6. A.

    \(\frac { 2n } { 15} \)

    B.

    \(\frac { 3n } { 16} \)

    C.

    \(\frac { 3n } { 8} \)

    D.

    \(\frac { 3n } { 16} \)


  7. The force in BC of the truss shown in the given figure, is 

  8. A.
    3.0t compression
    B.
    3.0t tension
    C.

    \(\frac { 3\sqrt{3} } { 2 } \) t tension

    D.

    \(\frac { 3\sqrt{3} } { 2 } \) t compression

    E.

    None of these.


  9. The equivalent length of a column of length L, having one end fixed and other end hinged, is

  10. A.

    2L

    B.

    L

    C.

    \(\frac {L } { 2 } \)

    D.

    \(\frac {L } {\sqrt{2} } \)


  11. At any point of a beam, the section modulus may be obtained by dividing the moment of inertia of the section by

  12. A.

    depth of the section

    B.

    depth of the neutral axis

    C.

    maximum tensile stress at the section

    D.

    maximum compressive stress at the section

    E.

    none of these.

    View Answer

    Workspace

    Discuss Discuss in Forum


  13. For calculating the permissible stress \(\frac { \sigma y } { 1+a(1/r)^2 } \) is the emprical formula, known as

  14. A.

    Straight line formula

    B.

    Parabolic formula

    C.

    Perry's formula

    D.

    Rankine's formula.


  15. The maximum height of a masonry dam of a triangular section whose base width is b and specific gravity s, is

  16. A.

    \(\sqrt{s}\)

    B.

    b.s

    C.

    \(\sqrt{bs}\)

    D.

    \(\sqrt{b}\)

    E.

    \(\frac { b } { \sqrt{s} } \)


  17. The load on a spring per unit deflection, is called

  18. A.

    stiffness

    B.
    proof resilience
    C.
    proof stress
    D.
    proof load.

    View Answer

    Workspace

    Discuss Discuss in Forum


  19. In a shaft, the shear stress is not directly proportional to

  20. A.
    radius of the shaft
    B.
    angle of twist
    C.
    length of the shaft
    D.
    modulus of rigidity.

    View Answer

    Workspace

    Discuss Discuss in Forum