Home / Mechanical Engineering / Engineering Mechanics :: Section 3

Mechanical Engineering :: Engineering Mechanics

  1. If the masses of both the bodies, as shown in the below figure, are doubled, then the acceleration in the string will be

  2. A.

    same

    B.

    half

    C.

    double

    View Answer

    Workspace

    Discuss Discuss in Forum


  3. The loss of kinetic energy during inelastic impact, is given by(where m1 = Mass of the first body,m2 = Mass of the second body, and u1 and u2 = Velocities of the first and second bodies respectively.)

  4. A.

    \( \frac { m_1m_2 } { 2(m_1 + m_2) } (u_1 - u_2)^2\)

    B.

    \( \frac {2(m_1 + m_2)} { m_1m_2 } (u_1 - u_2)^2\)

    C.

    \( \frac { m_1m_2 } { 2(m_1 + m_2) } (u_1^2 - u_2^2)\)

    D.

    \( \frac {2(m_1 + m_2)} { m_1m_2 } (u_1^2 - u_2^2)\)

    View Answer

    Workspace

    Discuss Discuss in Forum


  5. The centre of gravity of a hemisphere lies at a distance of 3r / 8 from its base measured along the vertical radius

  6. A.

    Correct

    B.

    Incorrect

    View Answer

    Workspace

    Discuss Discuss in Forum


  7.   

     
    The above figure shows the three coplaner forces PQ and R acting at a point O. If these forces are in equilibrium, then

  8. A.

    \(\frac { P } { sin\beta } = \frac { Q } { sin\alpha } = \frac { R } { sin\gamma}\)

    B.

    \(\frac { P } { sin\alpha } = \frac { Q } { sin\beta } = \frac { R } { sin\gamma}\)

    C.

    \(\frac { P } { sin\gamma} = \frac { Q } { sin\alpha } = \frac { R } { sin\beta}\)

    D.

    \(\frac { P } { sin\alpha } = \frac { Q } { sin\gamma} = \frac { R } { sin\beta}\)

    View Answer

    Workspace

    Discuss Discuss in Forum


  9. Moment of inertia of a rectangular section having width (b) and depth (d) about an axis passing through its C.G. and parallel to the depth (d), is

  10. A.

    \(\frac { db^3 } { 12 }\)

    B.

    \(\frac { bd^3 } { 12 }\)

    C.

    \(\frac { db^3 } { 36 }\)

    D.

    \(\frac { bd^3 } { 36 }\)

    View Answer

    Workspace

    Discuss Discuss in Forum