Loading [MathJax]/jax/output/CommonHTML/jax.js
Arithmetic Aptitude :: Surds and Indices
Answer : Option C
Explanation :
Given Expression=(243)n/5∗362n+19n∗3n−1
=(3)((n/5)∗32n+1(32)n∗3n−1
=(3)((n/5)∗32n+1(32n∗3n−1)
=3n∗32n+132n∗3n−1
=3(n+2n+13(2n+n−1
=33n+133n−1
= 3(3n + 1 - 3n + 1) = 32 = 9. |
|
Answer : Option C
Explanation :
11+a(n−m)+11+a(m−n)=1[1+an/am]+1[1+am/an]
=am(am+an)+an(am+an)
=(am+an)(am+an)
=1
-
If m and n are whole numbers such that mn = 121, the value of (m - 1)n + 1 is:
|
Answer : Option D
Explanation :
We know that 112 = 121.
Putting m = 11 and n = 2, we get:
(m - 1)n + 1 = (11 - 1)(2 + 1) = 103 = 1000.
-
[XbXc](b+c−a).[XcXa](c+a−b)[XaXb](a+b−c)=?
Answer : Option B
Explanation :
Given Exp. |
= x(b - c)(b + c - a) . x(c - a)(c + a - b) . x(a - b)(a + b - c) |
|
|
= x(b - c)(b + c) - a(b - c) . x(c - a)(c + a) - b(c - a)
. x(a - b)(a + b) - c(a - b) |
|
|
= x(b2 - c2 + c2 - a2 + a2 - b2) . x-a(b - c) - b(c - a) - c(a - b) |
|
|
|
|
|
-
If x = 3 +2 √2, then the value of |
 |
√X |
- |
1 |
 |
is: |
√X |
|
Answer : Option B
Explanation :
[√x−1√X)2=X+1X−2
=(3+2√2)+1(3+2€‹€‹€‹€‹€‹€‹√2)−2
=(3+2√2)+1(3+2€‹€‹€‹€‹€‹€‹√2)*(3−€‹€‹€‹€‹2√2)(3−2√2)−2
=(3+2√2)+(3-2√2)-2
=4
[√X-1√X]=2
Or drag and drop files below